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A B S T R A C T   

Background: Intake of conventionally grown fruits and vegetables (FVs) is an important route of exposure to 
pesticide residues in the general population. However, whether health risk stemming from exposure to pesticides 
through diet could offset benefits of consuming FVs is unclear. 
Objective: We assessed the association of FV intake, classified according to their pesticide residue status, with 
total and cause-specific mortality. 
Methods: We followed 137,378 women (NHS, 1998–2019, and NHSII, 1999–2019) and 23,502 men (HPFS, 
1998–2020) without cardiovascular disease, cancer, or diabetes at baseline. FV intake was assessed using vali-
dated food frequency questionnaires and categorized as having high- or low-pesticide-residues using data from 
the USDA Pesticide Data Program. Cox proportional hazards models were used to estimate hazard ratios (HRs) 
and 95% confidence intervals (CI) for total and cause-specific mortality associated with high- and low-pesticide- 
residue FV intake. 
Results: A total of 27,026 deaths, including 4,318 from CVD and 6,426 from cancer, were documented during 
3,081,360 person-years of follow-up. In multivariable-adjusted analyses, participants who consumed ≥4 serv-
ings/day of low-pesticide-residue FVs had 36% (95% CI: 32%-41%) lower mortality risk compared to partici-
pants who consumed <1 serving/day. The corresponding estimate for high-pesticide residue FV intake was 0.93 
(95% CI: 0.81–1.07). This pattern was similar across the three most frequent causes of death (cardiovascular 
disease, cancer and respiratory diseases). 
Conclusions: High-pesticide-residue FV intake was unrelated whereas low-pesticide residue FV intake was 
inversely related to all-cause mortality, suggesting that exposure to pesticide residues through diet may offset the 
beneficial effect of FV intake on mortality.   

1. Introduction 

Fruit and vegetables (FVs) are considered an integral part of a 
healthy diet and thus recommended by major organizations and gov-
ernment guidelines across the world; mostly for their well-documented 
benefits in the prevention of cardiovascular disease (CVD) (Millen et al., 

2016; Eckel et al., 2014). Nevertheless, the main exposure route for 
pesticide residues in the general population is diet, (Xue et al., 2014; Yu 
et al., 2012; Fortes et al., 2013; Lu et al., 2008) particularly through the 
consumption of conventionally grown FVs. Data from the USDA Pesti-
cide Data Program (PDP), which systematically surveys the presence of 
pesticide residues in foods sold in supermarkets, shows that in 2018 
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more than 50% of FVs consumed in the U.S. contained detectable 
pesticide residues and more than 30% had two or more pesticides (Ams, 
2018). 

Occupational exposure to pesticides used in agriculture is known to 
increase morbidity and mortality (Suratman et al., 2015). In fact, several 
pesticides have been banned in the last 50 years, but they can still persist 
on water and soil (Jones and de Voogt, 1999; Lovecka et al., 2015; Pouch 
et al., 2018). Moreover, risk assessments by the International Agency for 
Research on Cancer (IARC) have concluded that occupational exposure 
to certain pesticides used in agriculture is carcinogenic to humans. 
(IARC, 1991) Although tolerance levels of pesticides are regulated by the 
Environmental Protection Agency (EPA), these do not necessarily imply 
lack of adverse health effects in humans and therefore long-term dele-
terious effects on human health of pesticide residues through diet 
remain unclear. We have previously reported that exposure to pesticide 
residues through FV intake may reduce the benefits of FV intake on CVD 
incidence (Chiu et al., 2019) and is associated with adverse reproductive 
outcomes. (Chiu et al., 2018; Chiu et al., 2015) Others have reported 
benefits of consuming organic produce on cancer risk, (Baudry et al., 
2018) whereas overall exposure to pesticides through FV intake was not 
associated with cancer risk. (Sandoval-Insausti et al., 2021) However, it 
is not clear whether these apparent benefits on the incidence of major 
chronic non-communicable diseases can impact mortality. To address 
this question, we examined the association of FV intake, considering 
their pesticide residue status based on surveillance data, with total and 
cause-specific mortality in three cohorts of U.S. health professionals. 

2. Methods 

2.1. Study population 

We included participants from three ongoing U.S. based prospective 
cohorts: the Nurses’ Health Study (NHS) which included 121,700 female 
registered nurses aged 30–55 years in 1976; the Nurses’ Health Study II 
(NHSII) which included 116, 671 female registered nurses, aged 25–42 
in 1989; and the Health Professionals Follow-up Study (HPFS) which 
included 51,529 male health professionals aged 40–75 in 1986. (Bao 
et al., 2016) At baseline and biennially thereafter, participants of all 
cohorts were asked to complete a self-administered questionnaire to 
obtain information on demographic factors, lifestyle, and medical his-
tory. Habitual food consumption was recorded every four years using an 
extensively validated food frequency questionnaire (FFQ) with 131 food 
items, of which 27 were fruits and vegetables. (Rimm et al., 1992; Yuan 
et al., 20182018; Yuan et al., 2017) The follow-up rates in each cycle 
were around 90%. In the current analysis, we followed individuals from 
1998 (in NHS and HPFS) and 1999 (in NHSII) based on the ability to 
couple information on FV intake from prospectively collected FFQs with 
contemporaneous national surveillance data on pesticide residues in 
food. We excluded participants with cardiovascular disease, cancer, or 
diabetes at baseline. We also excluded participants with missing or 
invalid total energy intakes (<500 or greater than 3500 kcal/day for 
women and < 800 or greater than 4200 kcal/day for men) or who lacked 
data on more than 50% of the FVs related questions. The study protocol 
was approved by the institutional review boards of the Brigham and 
Women’s Hospital and Harvard T.H. Chan School of Public Health, and 
those of participating registries as required. 

2.2. Pesticide residue assessment 

FVs reported in the FFQ were classified as having high- or low- 
pesticide-residues using the Pesticide Residue Burden Score (PRBS), a 
validated score system used to ascertain pesticide residues in FVs. (Hu 
et al., 2016; Chiu et al., 2018) Briefly, we linked period-matched data on 
pesticide residues in FVs as reported in surveillance data from the PDP, 
(Ams, 2018) with individual level FV intake data as reported in the FFQ. 
PDP database includes approximately 420 pesticides and their 

metabolites. In 2018, detectable levels of at least one pesticide was re-
ported in more than 50% of conventionally grown FVs in and 2 or more 
pesticides were detected in 31% of the fruits and vegetables analyzed. 
(Ams, 2018) PDP data from 1996 to 1999 was paired to FFQ data from 
1998 (NHS/HPFS) and 1999 (NHSII); PDP data from 2000 to 2003 was 
paired to FFQ data from 2002 and 2003; until 2012–2013. Each FV 
included in the FFQ was ranked according to three measures obtained 
from the PDP: 1) the percentage of samples with any detectable pesticide 
residues; 2) the percentage of samples with any pesticide residues above 
tolerance levels; and 3) the percentage of samples with three or more 
individual detectable pesticides. For each contamination measure, a 
score of 0 was assigned for FVs in the lowest tertile, 1 for FVs in the 
middle tertile, and 2 for FVs in the highest period-specific tertile. The 
PRBS was the sum of scores across the three measures on a scale of 0 to 6. 
Then, for each period, FVs with PRBS ≥ 4 were classified as having high- 
pesticide-residue status, FVs with PRBS < 4 as having low-pesticide- 
residue status, and FVs without matching PDP data as having undeter-
mined -pesticide residue status. Finally, intakes of high-, low-, and un-
determined pesticide-residue FVs were summed for each participant in 
the three cohorts (Table S1). (Chiu et al., 2019) 

2.3. Covariates 

In the questionnaires, participants self-reported diagnoses of hyper-
tension, hypercholesterolemia, cardiovascular disease, cancer, and dia-
betes as well as information on race, body mass index (BMI), physical 
activity, family history of cancer and cardiovascular disease, smoking 
status, and smoking in package-years. Further information on total en-
ergy intake, alcohol intake, and the Alternate Healthy Eating Index, 
excluding criteria for intake of FVs and alcohol, was collected every four 
years. (McCullough and Willett, 2006; Chiuve et al., 2012) In the NHS 
and NHSII, updated data on postmenopausal status and current hormone 
therapy use were also gathered. 

2.4. Outcome assessment 

Our main outcome was all-cause mortality. Deaths from the three 
cohorts were assessed from state vital records, National Death Index, 
and reports from family members or the postal authorities. These 
methods ascertained more than 98% of the deaths. (Rich-Edwards et al., 
1994) The cause of death was classified according to the International 
Classification of Diseases, Eighth Revision (ICD-8) in four categories: 
deaths from cardiovascular disease (heart failure, coronary heart dis-
ease, stroke, and any other vascular disease; ICD codes: 390–458), 
deaths from cancer (ICD codes: 140–207), deaths from respiratory dis-
eases (ICD codes: 460–519), and other causes of death (Table S2). We 
also calculated premature deaths, defined as deaths before age 70 years, 
in all the three cohorts. (Shiels et al., 2017) 

2.5. Statistical analysis 

We followed the participants from the date of the return of the 
baseline questionnaire to the date of death or the end of follow up (June 
2019 in NHS and NHSII and June 2020 in HPFS), whichever occurred 
first. Cumulative average intakes of high- and low-pesticide-residue FVs 
over updated questionnaires were calculated and modeled in categories 
of absolute intake (<1, 1–1.9, 2–2.9, 3–3.9, ≥4 servings/day) and as 
quintiles of intake. The associations between high- and low-pesticide- 
residue FV intake and all-cause, cause-specific, and premature mortal-
ity were summarized with Hazard Ratios (HRs) and their 95% confi-
dence interval (95% CI) obtained from Cox proportional hazards 
regression models with age as the time scale. In the multivariable 
analysis, we adjusted for age (years), BMI (quintiles), race (white/non- 
white), physical activity (quintiles), family history of cancer (yes/no), 
family history of cardiovascular disease (yes/no), smoking in package- 
years (never smoker, 1–4.9, 5–19.9, 20–39.9, or greater than 40), 
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baseline hypertension (yes/no), baseline hypercholesterolemia (yes/ 
no), total energy intake (quintiles), alcohol intake (0, 0.1–4.9, 5.0–14.9, 
15.0–29.9, or greater than 30 g/day), and a modified version of the 
Alternate Healthy Eating Index (quintiles), which excluded scoring for 
intakes of fruits, vegetables, and alcohol. In the NHS and NHSII, we 
further adjusted for postmenopausal hormone use (premenopausal/ 

never/past/current). For intakes of high-pesticide-residue FVs, the 
multivariable model was additionally adjusted for intakes of low- 
pesticide-residue FVs and other FVs with undetermined-pesticide- 
residues. Similarly, models for low-pesticide-residue FV intake were 
further adjusted for intakes of high-pesticide-residue FVs and other FVs 
with undetermined- pesticide-residue status. Tests for linear trend were 

Table 1 
Baseline characteristics of participants according to absolute intakes of high- and low-pesticide-residue fruits and vegetables.   

High-Pesticide-Residue Fruit and Vegetable Intake (servings/ 
day) 

Low-Pesticide-Residue Fruit and Vegetable Intake (servings/ 
day) 

Characteristics <1 ≥2-< 3 ≥4 <1 ≥2-< 3 ≥4 
Nurses’ Health Study (1998) 
Number of participants 20,267 10,096 1,512 7,821 17,717 4,626 
High-pesticide-residue FVs (servings/day) 0.6(0.2) 2.4(0.3) 5.2(1.4) 0.8(0.7) 1.7(0.9) 2.6(1.4) 
Low-pesticide-residue FVs (servings/day) 1.6(0.9) 2.8(1.2) 3.8(1.9) 0.7(0.2) 2.4(0.3) 5.0(1.3) 
Total FVs (servings/day) 2.9(1.2) 6.4(1.5) 10.7(2.9) 2.2(1.0) 5.1(1.3) 9.0(2.5) 
Age (y) 63.6(7.2) 64.0(6.9) 62.8(6.5) 64.0(7.3) 63.8(7.0) 63.5(6.7) 
BMI (kg/m2) 26.6(5.3) 26.1(4.9) 25.4(4.9) 26.5(5.2) 26.3(5.0) 26.0(4.9) 
Postmenopause (%) 93.4 93.3 94.1 93.2 93.2 93.6 
White (%) 97.7 97.7 96.9 97.1 97.9 96.8 
Physical activity (MET/wk) 13.2(17.9) 22.8(24.7) 30.4(30.6) 13.0(18.1) 18.9(21.9) 25.1(27.5) 
Family history of cancer (%) 21.5 23.0 23.7 21.0 22.2 22.7 
Family history of cardiovascular disease (%) 6.6 7.0 6.8 6.8 6.4 6.7 
Never smoker (%) 43.5 50.1 48.6 42.0 48.0 51.0 
No of pack-years among ever smokers 15.9 (21.8) 9.9(16.3) 9.7 (15.5) 17.3(22.7) 11.6(18.0) 10.4(17.2) 
Current hormone therapy use (%) 45.9 49.4 48.1 44.5 48.7 48.3 
Hypertension (%) 39.6 38.1 35.3 37.3 38.9 41.7 
Hypercholesterolemia (%) 54.7 53.3 50.2 54.1 53.8 53.5 
Total energy intake (kcal/day) 1,527(482) 1,932(521) 2,166(568) 1,373(452) 1,807(477) 2,227(538) 
Alcohol intake (g/day) 5.2(9.7) 5.1(8.4) 4.5(7.7) 4.5(9.4) 5.5(9.2) 5.5(9.2) 
Modified AHEI (score)* 38.1(8.3) 40.4(8.5) 41.9(8.8) 41.4(8.6) 38.2(8.3) 37.9(8.0) 
Nurses’ Health Study II (1999) 
Number of participants 33,222 10,669 1,921 13,978 20,124 4,939 
High-pesticide-residue FVs (servings/day) 0.6(0.3) 2.4(0.4) 5.4(1.6) 0.7(0.6) 1.6(0.9) 2.6(1.6) 
Low-pesticide-residue FVs (servings/day) 1.5(0.9) 2.8(1.2) 3.8(2.1) 0.7(0.2) 2.4(0.3) 5.1(1.3) 
Total FVs (servings/day) 2.5(1.2) 6.1(1.6) 10.5(3.4) 1.8(0.9) 4.8(1.3) 8.9(2.9) 
Age (y) 44.4(4.7) 45.0(4.6) 45.1(4.6) 44.5(4.7) 44.7(4.6) 45.0(4.6) 
BMI (kg/m2) 26.7(6.3) 25.9(5.7) 25.4(5.7) 26.9(6.4) 26.1(5.9) 26.0(6.0) 
Postmenopause (%) 22.2 22.0 21.7 23.1 21.3 21.8 
White (%) 96.2 97.1 95.4 95.4 97.2 95.1 
Physical activity (MET/wk) 14.7(19.2) 23.3(24.3) 29.8(31.2) 14.3(19.4) 19.9(22.7) 26.0(30.0) 
Family history of cancer (%) 19.3 20.0 21.9 19.4 19.8 19.5 
Family history of cardiovascular disease (%) 33.9 32.8 33.1 33.9 32.7 33.1 
Never smoker (%) 65.3 67.1 64.7 64.1 67.3 68.7 
No of pack-years among ever smokers 5.2(9.8) 3.8(7.5) 4.1(7.6) 5.7(10.4) 4.0(8.0) 3.7(7.6) 
Current hormone therapy use (%) 1.0 1.2 1.1 1.1 0.9 1.1 
Hypertension (%) 13.2 12.5 11.1 13.2 12.8 13.3 
Hypercholesterolemia (%) 25.6 22.8 22.9 24.9 23.8 22.7 
Total energy intake (kcal/day) 1,632(521) 2,086(542) 2,270(578) 1,458(475) 1,959(509) 2,375(542) 
Alcohol intake (g/day) 3.7(9.1) 4.2(6.8) 3.9(7.2) 3.2(7.2) 4.3(7.1) 4.3(7.5) 
Modified AHEI (score)* 37.4(9.1) 40.2(9.7) 42.9(10.0) 39.9(9.2) 37.8(9.4) 37.7(9.3) 
Health Professionals Follow-up Study (1998) 
Number of participants 7,763 4,106 845 2,394 7,219 2,576 
High-pesticide-residue FVs (servings/day) 0.6(0.2) 2.4(0.3) 5.4(1.5) 0.9(0.7) 1.6(0.9) 2.6(1.6) 
Low-pesticide-residue FVs (servings/day) 1.8(1.0) 3.0(1.3) 4.0(2.0) 0.7(0.2) 2.5(0.3) 5.2(1.3) 
Total FVs (servings/day) 3.1(1.3) 6.6(1.6) 11.2(2.9) 2.2(1.0) 5.1(1.3) 9.2(2.7) 
Age (y) 62.1(8.5) 64.3(8.7) 64.5(8.9) 62.2(8.5) 63.4(8.7) 63.2(8.7) 
BMI (kg/m2) 26.2(3.4) 25.6(3.4) 25.5(3.5) 26.3(3.5) 25.9(3.4) 25.8(3.6) 
White (%) 90.4 91.6 92.5 90.1 91.7 90.6 
Physical activity (MET/wk) 28.3(33.5) 43.7(44.2) 54.6(51.4) 26.9(35.8) 36.6(38.8) 48.0(48.5) 
Family history of cancer (%) 9.8 10.7 12.0 8.6 11.0 10.1 
Family history of cardiovascular disease (%) 9.5 9.6 9.4 9.8 10.2 8.6 
Never smoker (%) 50.8 57.7 62.6 50.4 55.6 61.1 
No of pack-years among ever smokers 13.3(19.2) 8.7(14.3) 7.7(12.7) 13.7(19.3) 10.2(16.0) 8.5(14.8) 
Hypertension (%) 33.0 29.6 28.7 31.1 31.0 32.1 
Hypercholesterolemia (%) 45.5 42.5 41.6 45.1 43.5 41.0 
Total energy intake (kcal/day) 1,797(558) 2,198(610) 2,484(646) 1,607(513) 2,046(562) 2,490(643) 
Alcohol intake (g/day) 12.0(15.7) 10.5(12.8) 9.3(11.8) 11.0(15.7) 11.5(14.0) 10.5(12.9) 
Modified AHEI (Score)* 32.3(8.0) 37.0(8.0) 40.3(8.7) 34.8(8.9) 34.4(8.1) 35.8(8.0) 

Values are means (SD) or percentages. All variables except age are age-standardized. 
Abbreviations: Modified AHEI, Modified Alternate Healthy Eating Index score; BMI, body mass index; METs: metabolic equivalent tasks; FV: fruits and vegetables. 
*Modified AHEI: AHEI-2010, but excluding criteria for intakes of fruits and vegetables and alcohol. 
METs are defined as the ratio of caloric needed per kilogram of body weight per hour of physical activity divided by the caloric needed per kilogram of body weight at 
rest. 
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assessed by modeling as a continuous variable the median values of each 
category of consumption. Analyses were carried out separately for each 
cohort and then were pooled using a fixed-effect model. To test for non- 
linear associations and examine the dose–response relationships, we 
depicted restricted cubic splines with four knots using the exposure 
variables as continuous in fully-adjusted models. Finally, we estimated 
the effect of substituting high-pesticide-residue FVs with low-pesticide- 
residue FVs by modeling both as continuous variables in the same model 
and using the difference of the regression coefficients as the point esti-
mate, and the covariance matrix to estimate 95 %CIs. We also carried 
out cohort-specific analyses and evaluated the intake of FVs modeled as 
quintiles, the deaths before age 70 years, and the most recent diet 

assessment. Moreover, we did not see evidence of effect modification by 
various established risk factors for premature mortality. 

Analyses were performed with SAS software version 9.4 for UNIX 
(SAS Institute, Cary, NC), at a two sided p<0.05. 

3. Results 

We identified 27,026 deaths over 3,081,360 person-years of follow- 
up, including 4,318 from CVD, 6,426 from cancer, 2,012 from respira-
tory diseases, and 14,222 from other causes. Of these deaths, 3,492 took 
place before age 70 years. Participants who consumed ≥ 4 servings/day 
of high-pesticide-residue FV intake were more frequently active, never 

Table 2 
Pooled hazard ratios (95% CI) of total mortality, CVD mortality, cancer mortality, respiratory mortality, and other causes of death according to absolute intakes of 
high- and low-pesticide-residue fruits and vegetables in the NHS, NHSII, and HPFS.   

High-Pesticide-Residue Fruit and Vegetable Intake (servings/day) P, trend  
<1 ≥1-<2 ≥2-< 3 ≥3- <4 ≥4  

Total mortality (n ¼ 27,026) 
Person-years 1,228,473 1,280,067 426,074 102,468 44,278  
Cases 12,133 10,777 3,185 696 235  
Age-adjusted 1 (Ref.) 0.70 (0.68, 0.72) 0.62(0.60, 0.65) 0.63(0.59, 0.69) 0.59(0.52, 0.68)  <0.0001 
Multivariable-adjusted1,2 1 (Ref.) 0.95 (0.92, 0.99) 0.97(0.92, 1.02) 1.01(0.93, 1.11) 0.93(0.81, 1.07)  0.84 
CVD mortality (n ¼ 4,318) 
Cases 1,861 1,764 539 113 41  
Age-adjusted1 1 (Ref.) 0.74(0.70, 0.80) 0.64(0.58, 0.71) 0.61(0.50, 0.75) 0.56(0.41, 0.78)  <0.0001 
Multivariable-adjusted1,21 (Ref.)1.03 (0.95, 1.12)1.00 (0.88, 1.14)1.03(0.82, 1.28)0.95(0.67, 1.34)0.76 
Cancer mortality (n ¼ 6,426) 
Cases 2,722 2,583 854 198 69  
Age-adjusted 1 (Ref.) 0.76(0.72, 0.81) 0.72(0.67, 0.78) 0.72(0.62, 0.83) 0.67(0.53, 0.85)  <0.0001 
Multivariable-adjusted1,2 1 (Ref.) 0.93(0.87, 1.00) 1.01(0.92, 1.12) 1.02(0.86, 1.20) 0.93(0.72, 1.20)  0.95 
Respiratory mortality (n ¼ 2,012)4 

Cases 1,009 730 212 48 13  
Age-adjusted 1 (Ref.) 0.56 (0.51, 0.61) 0.47 (0.40, 0.55) 0.51(0.38, 0.68) 0.38(0.22, 0.66)  <0.0001 
Multivariable-adjusted1,2 1 (Ref.) 0.85 (0.75, 0.96) 0.90 (0.74, 1.09) 1.05(0.76, 1.47) 0.66(0.36, 1.19)  0.41 
Other causes of death (n ¼ 14,222)5 

Cases 6,516 5,682 1,575 337 112  
Age-adjusted 1 (Ref.) 0.69(0.66, 0.71) 0.59(0.56, 0.63) 0.63(0.56, 0.70) 0.63(0.52, 0.76)  <0.0001 
Multivariable-adjusted1,2 1 (Ref.) 0.96(0.92, 1.00) 0.94(0.88, 1.02) 1.10(0.97, 1.25) 1.17(1.09, 1.25)  0.78  

Low-Pesticide-Residue Fruit and Vegetable Intake (servings/day) P, trend  
<1 ≥1-<2 ≥2-< 3 ≥3- <4 ≥4  

Total mortality (n ¼ 27,026) 
Person-years 398,732 956,163 950,927 501,456 274,083  
Cases 3,808 8,324 8,230 4,296 2,368  
Age-adjusted 1 (Ref.) 0.67 (0.65, 0.70) 0.54 (0.52, 0.56) 0.48 (0.46, 0.50) 0.47 (0.44, 0.49)  <0.0001 
Multivariable-adjusted1,3 1 (Ref.) 0.81 (0.77, 0.84) 0.72 (0.68, 0.75) 0.65 (0.62, 0.69) 0.64 (0.59, 0.68)  <0.0001 
CVD mortality (n ¼ 4,318) 
Cases 611 1,279 1,258 725 445  
Age-adjusted 1 (Ref.) 0.66 (0.60, 0.73) 0.51 (0.46, 0.57) 0.48 (0.43, 0.54) 0.49 (0.43, 0.56)  <0.0001 
Multivariable-adjusted1,3 1 (Ref.) 0.77 (0.69, 0.86) 0.65 (0.57, 0.73) 0.64 (0.55, 0.74) 0.70 (0.58, 0.83)  <0.0001 
Cancer mortality (n ¼ 6,426) 
Cases 762 1,989 2,053 1,071 551  
Age-adjusted 1 (Ref.) 0.82(0.76, 0.90) 0.72(0.66, 0.78) 0.65(0.59, 0.72) 0.60(0.54, 0.67)  <0.0001 
Multivariable-adjusted1,3 1 (Ref.) 0.95(0.86, 1.04) 0.91(0.82, 1.01) 0.87(0.77, 0.98) 0.81(0.69, 0.94)  <0.01 
Respiratory mortality (n ¼ 2,012)4 

Cases 317 640 589 306 160  
Age-adjusted 1 (Ref.) 0.62 (0.54, 0.71) 0.46 (0.40, 0.53) 0.39 (0.33, 0.46) 0.36 (0.29, 0.44)  <0.0001 
Multivariable-adjusted1,3 1 (Ref.) 0.80 (0.69, 0.93) 0.71 (0.59, 0.84) 0.65 (0.52, 0.80) 0.62 (0.47, 0.82)  <0.0001 
Other causes of death (n ¼ 14,222)5       

Cases 2,107 4,396 4,319 2,190 1,210  
Age-adjusted 1 (Ref.) 0.63(0.60, 0.67) 0.50(0.47, 0.52) 0.43(0.40, 0.45) 0.43(0.40, 0.46)  <0.0001 
Multivariable-adjusted1,3 1 (Ref.) 0.77(0.73, 0.81) 0.67(0.62, 0.72) 0.60(0.55, 0.65) 0.56(0.51, 0.63)  <0.0001 

Abbreviations: NHS, Nurses’ Health Study; NHSII, Nurses’ Health Study II; HPFS, Health Professionals Follow-up Study. 
1 Adjusted for age, body mass index (quintiles), ethnicity (white/non-white), physical activity (quintiles), family history of cancer (yes/no), family history of 

cardiovascular disease (yes/no), smoking in package-years (never smoker, 1–4.9, 5–19.9, 20–39.9, or ≥ 40), postmenopausal hormone use (premenopausal/never/ 
past/current, in NHS and NHSII), baseline hypertension (yes/no), baseline hypercholesterolemia (yes/no), total energy intake (quintiles), alcohol intake (0, 0.1–4.9, 
5.0–14.9, 15.0–29.9, or ≥ 30 g/day), and Alternate Healthy Eating Index score excluding criteria for intake of fruits and vegetables and alcohol (quintiles). 

2 Additionally adjusted for intakes of low-pesticide-residue fruits and vegetables (servings/day) and other fruits and vegetables with undetermined residues 
(quintile). 

3 Additionally adjusted for intakes of high-pesticide-residue fruits and vegetables (servings/day) and other fruits and vegetables with undetermined residues 
(quintile). 

4 Respiratory mortality only included NHS and HPFS. 
5 Other causes of death included diabetes, neurological disease, kidney diseases, injury or poison, suicide, and all other causes. 
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smokers and were more likely to have hypercholesterolemia, had a 
lower BMI, and a higher consumption of total calories, total FVs, fla-
vonoids, antioxidant nutrients, and fiber. (Table 1 and Table S3). We 
observed the same pattern of association between baseline characteris-
tics and intake of low-pesticide-residue FV intake (Table 1 and 
Table S3). Intakes of low-pesticide-residue and high-pesticide-residue 
FVs were positively related to each other (rSpearman = 0.63 in NHS, 
0.70 in NHSII, and 0.63 in HPFS). 

In age-adjusted models, intakes of high- and low-pesticide-residue 
FVs were inversely associated with all-cause and cause-specific mortal-
ity (Table 2). In multivariable-adjusted analyses, however, intake of 
high-pesticide-residue FVs was unrelated to mortality whereas the in-
verse association for low-pesticide residue FV intake persisted (Table 2). 
Most of the change between the age-adjusted and the multivariate- 
adjusted models was a result of adjustment for physical activity. Rela-
tive to individuals consuming <1 serving of high-pesticide-residue FVs/ 
day, the pooled multivariable-adjusted HRs (95% CI) for total mortality 
were 0.95 (0.92–0.99) for individuals consuming 1–1.9 servings/day, 
0.97(0.92–1.02) for individuals consuming 2–3 servings/day, 1.01 
(0.93–1.11) for individuals consuming 3–4 servings/day, and 0.93 
(0.81–1.07) for individuals consuming ≥ 4 servings/day (P, trend =
0.84). The corresponding estimates for intake of low-pesticide-residue 
were: 1 (Reference), 0.81 (0.77–0.84), 0.72 (0.68–0.75), 0.65 
(0.62–0.69), and 0.64 (0.59–0.68) (P for trend ≤ 0.001). This pattern 
was similar in analyses of cause-specific mortality (Table 2), when 
intake was modeled as quintiles (Table S4), in cohort-specific analyses 
(Table S5), when only deaths before age 70 years were considered 
(Table S6), and when only the most recent diet assessment was 
considered (Table S7). Interestingly, although intake of low-pesticide 
residue FV was inversely related to mortality from causes other than 
CVD, cancer and respiratory diseases, combined (Table 2), mortality 
from neurological diseases was unrealated to intake of intake of either 
low- or high-pesticide residue FVs. 

To gain further insights into the shape of the dose–response relation 
we then modeled intake of FVs as a continuous variable, allowing for 
non-linear relations (Fig. 1). In these models, the inverse relation of low- 
pesticide residue FV with all-cause (Fig. 1B), CVD (Fig. 1D), and respi-
ratory mortality (Fig. 1H) plateaued at approximately a 50% reduction 
in mortality with an intake of 3.5 servings/day, whereas for cancer 
mortality the benefits were more modest but did not plateau within the 
observed range of intake (Fig. 1F). The picture was more complex for 
intake of high-pesticide-residue FV intake. For all-cause mortality, there 
was a statistically significant non-linear relation where intake of high- 
pesticide-residue FVs was related to lower mortality rates at modest 
intake levels, reaching a nadir at intakes of 1.5 servings/day, but 
without evidence of benefit at higher intake levels (Fig. 1A). This pattern 
was similar to that observed for cancer mortality (Fig. 1E), and respi-
ratory mortality (Fig. 1G). On the other hand, intake of high-pesticide- 
residue FVs was completely unrelated to CVD mortality within the 
observed range of intake (Fig. 1C). 

We then estimated the effect of substituting high-pesticide-residue 
FVs with low-pesticide-residue FVs (Figure S1). Consuming one daily 
serving of low-pesticide-residue FVs instead of a serving of high- 
pesticide residue FVs was associated with 11% lower risk of all-cause 
mortality (HR: 0.89; 95 %CI: 0.86–0.93). A similar pattern was 
observed in analyses for disease-specific mortality. 

4. Discussion 

We evaluated the association of high- and low-pesticide-residue FV 
intake with all-cause and cause-specific mortality in three large U.S. 
cohorts. We observed that intakes of FVs with low-pesticide-residue 
content were associated with lower risk of total mortality and cause- 
specific mortality. Specifically, consumptions of ≥ 4 servings/day of 
low-pesticide-residue FVs were linked to 36% lower risk of total mor-
tality relative to consuming < 1 serving/day. Conversely, intake of high- 

pesticide-residue FVs was unrelated to mortality, with some differences 
for cancer, CVD and respiratory disease mortality. On aggregate, these 
findings suggest that exposure to pesticide residues through diet may 
offset some of the well documented benefits of FV consumption on 
mortality, particularly for CVD mortality. 

A recent meta-analysis found that intakes of FVs up to 800 g/day (10 
servings/day) were associated with decreased risk of all-cause mortality. 
(Aune et al., 20172017) Another previous meta-analysis investigated the 
same relationship, reporting higher FV consumption reduced total 
mortality risk up to around 5 servings/day. (Wang et al., 2014) An in-
verse relationship was found for cardiovascular mortality whereas no 
association was reported for cancer mortality. Regarding respiratory 
disease, although we did not have a prior hypothesis regarding exposure 
to pesticides through diet in relation to this outcome, a meta-analysis 
showed FV intake protects against respiratory diseases, such as asthma. 
(Hosseini et al., 2017) An inverse relationship was also observed be-
tween dietary patterns with high plant-based foods and chronic respi-
ratory mortality. (Neelakantan et al., 2018) Moreover, others have 
shown that diets favoring intake of fruits and vegetables are related to a 
lower risk of chronic obstructive pulmonary disease. (Varraso et al., 
2015; Tabak et al., 2001; Varraso et al., 2010) The 2015 USDA Dietary 
Guidelines for Americans recommended intake of 4.5 servings/day from 
fruits and vegetables for adults consuming 2,000 calories/day. (U.s., 
December 2015) Our results for low-pesticide-residue FV intake suggest 
a benefit for total and disease specific mortality and are in line with 
these findings and recommendations. 

Despite the consistency between our findings for low-pesticide- 
residue FVs with the existing literature, the divergent association of 
high-pesticide-residue FVs with mortality begs for an explanation. 
Confounding should be considered as a first potential explanation. 
However, not only were intakes of high- and low-pesticide residues 
positively related to each other in this study population but also each of 
these were associated with generally more healthy behaviors including 
healthier diets, greater engagement in physical activity and less smok-
ing. Another potential explanation is that the nutritional profile of high- 
and low-pesticide-residue FVs is sufficiently different to result in 
different relations with mortality. This, however, proved not to be the 
case in this study population (Table S3). While we did not have direct 
biomarker measures of exposure to pesticides, we have previously 
shown that the classification method used in this study is related to 
biomarkers of exposure to pesticides in a clinical sample from Boston as 
well as in samples representative of the general population of the U.S. 
(Hu et al., 2016; Chiu et al., 2018) Based on these considerations, our 
interpretation of these findings is that the diverging relations of high- 
and low-pesticide-residue FV intake with mortality are attributable to 
pesticide contamination of these foods. 

To our knowledge, no previous epidemiological study has directly 
examined the association between exposure to pesticide residues 
through diet and mortality. There are some studies; however, that have 
assessed associations with risk of major chronic diseases. Organic foods 
are less likely to have pesticide residues than conventionally grown 
foods due to the prohibition of synthetic pesticides by organic food 
standards. Moreover, interventions switching individuals from conven-
tional to organic diets result in a dramatic decline in urinary pesticide 
metabolites. (Hyland et al., 2019; Baudry et al., 2019; Lu et al., 2006; 
Bradman et al., 2015; Oates et al., 2014) In the Nutri-Net Santé study, 
increasing consumption of organic foods was related to 25% lower 
cancer risk, driven by inverse relations with post-menopausal breast 
cancer and Non-Hodgkin lymphoma (NHL). (Baudry et al., 2018) 
However, in the Million Women Study, organic food intake was unre-
lated to cancer risk, although it was inversely related to NHL risk. 
(Bradbury et al., 2014) Using the same method for classifying FVs in the 
U.S. food supply according to their pesticide residues, we have previ-
ously reported no association between intake of low- or high-pesticide 
residue fruits and vegetables and cancer incidence, (Sandoval-Insausti 
et al., 2021) raising the question of whether exposure to pesticide 
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Fig. 1. Fruit and vegetable intake, considering pesticide residue status, and total mortality (panels A and B), CVD mortality (panels C and D), cancer mortality 
(panels E and F), and respiratory mortality (panels G and H). Adjusted for age, body mass index (quintiles), ethnicity (white/non-white), physical activity (quintiles), 
family history of cancer (yes/no), family history of cardiovascular disease (yes/no), smoking in package-years (never smoker, 1–4.9, 5–19.9, 20–39.9, or ≥ 40), 
postmenopausal hormone use (premenopausal/never/past/current, in NHS and NHSII), baseline hypertension (yes/no), baseline hypercholesterolemia (yes/no), 
total energy intake (quintiles), alcohol intake (0, 0.1–4.9, 5.0–14.9, 15.0–29.9, or ≥ 30 g/day), and Alternate Healthy Eating Index score excluding criteria for intake 
of fruits and vegetables and alcohol (quintiles). Panels A,C,E,G are additionally adjusted for intakes of low-pesticide-residue fruits and vegetables (servings/day) and 
other fruits and vegetables with undetermined residues(servings/day). Panels B,D,F,H are additionally adjusted for intakes of high-pesticide-residue fruits and 
vegetables (servings/day) and other fruits and vegetables with undetermined residues(servings/day). 
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residues through diet may be related to disease progression, rather than 
incidence. This scenario would be consistent with our observations of no 
elevated risk of cancer but increased cancer mortality, is consistent with 
previous findings on the relation between diet and incidence of common 
malignancies, (Chavarro et al., 2008) and should be evaluated in future 
studies. Also of relevance to our finding of a divergent association 
pattern for low and high-pesticide residue intake with mortality, we 
previously reported an inverse association of low-pesticide-residue FV 
intake with coronary heart disease but no relation between high- 
pesticide-residue FV intake with this outcome, (Chiu et al., 2019) mir-
roring our findings for CVD mortality. We have also reported the same 
pattern of association for different reproductive outcomes, including 
successful infertility treatment and markers of spermatogenesis (Chiu 
et al., 2018; Chiu et al., 2015; Chiu et al., 2016). 

The mechanisms underlying these findings have not been reported 
yet in humans. Concerning animal research, (Gibert and Sargis, 2020) 
long-term gestational and lactational exposure to six pesticides (Cyro-
mazine, MCPB, Pirimicarb, Quinoclamine, Thiram, and Ziram) was 
related to metabolic disorders in rats. (Svingen et al., 2018) Likewise, 
chronic ingestion of six pesticides (boscalid, captan, chlorpyrifos, thio-
fenate, thiaclopid, and ziram) was associated with metabolic disruption 
in mice. (Lukowicz et al., 2018) Long-term exposure to eleven pesticides, 
including pesticides found on food samples, was linked to body weight 
gain and hepatotoxic parameters in rats. (Docea et al., 2018) In vitro, the 
incubation for 48 h of McA rat hepatoma cells with chlorpyrifos pro-
moted hepatic steatosis, by increasing lipid accumulation and 
decreasing triglycerides secretion. (Howell et al., 2016) Nevertheless, no 
previous animal or in vitro study has tested the effects of dietary pesti-
cide exposure on mortality. 

Our study has notable strengths. This is the first epidemiological 
study that we know of to assess associations between dietary pesticide 
exposure and mortality. Diet was measured repeatedly with a validated 
tool during 20 years of follow-up, (Rimm et al., 1992; Yuan et al., 2018; 
Yuan et al., 2017) and cumulative average intakes were calculated to 
mitigate within-subject variation. Furthermore, we had a large sample 
size and number of deaths, providing enough statistical power and 
allowed to examine different causes of mortality. Some limitations 
should be noted. First, dietary pesticide exposure was not quantified 
directly in each participant but obtained by matching self-reported FV 
intake from FFQ with pesticide residue surveillance data. Second, we 
could not take into account whether FVs were conventionally grown or 
organic. Third, it was not possible to match some FVs in the FFQ with the 
corresponding item in the pesticide surveillance data, particularly in the 
early years of follow-up when the PDP had yet to collect information on 
most produce available in the U.S. This could lead to certain misclassi-
fication and lack of specificity of pesticide exposure. However, we 
created a category of undetermined-pesticide-residue FVs we adjusted 
for in multivariable analyses. Fourth, the PRBS prioritizes the assesment 
of overall food contamination with pesticides rather than contamination 
with specific compounds. This may result in observed associations that 
are weaker than true associations, especially if associations are driven by 
only one or a small number of specific pesticides and contamination with 
the causally-relevant pesticide is only weakly related to overall 
contamination. Although we cannot rule out this possibility, we do know 
that the overall contamination score correlates well with markers of 
exposure to organophosphates, organochlorides and 2,4-D. Additional 
limitations related to the PRBS include the fact that it does not take into 
consideration cooking methods, which could affect exposure to pesticide 
residues, and that if focuses exclusively on intake of fruits and vegeta-
bles, which are the most important –but not the only– source of pesticide 
residues in the diet. Fifth, as in most nutritional epidemiological studies, 
diet was self-reported and measurement error cannot be dismissed. 
Sixth, some residual confounding cannot be ruled out. However, results 
remained unchanged after several sensitivity analyses and after adjust-
ing for a large number of potential confounders, including variables 
associated with the exposure or the outcome in the literature. (Ding 

et al., 2019) 
In conclusion, low-pesticide-residue FV intake was inversely related 

to mortality whereas high-pesticide-residue FV intake was unrelated to 
mortality, suggesting pesticide residues may modify the beneficial effect 
of FV intake on mortality. Nevertheless, given the paucity of data on this 
topic, more studies should be performed in order to provide further 
evidence on the long-term health effects of pesticide exposure through 
diet. Additional evaluation in independent studies is particularly 
important for respiratory disease mortality and for mortality due to 
causes other than CVD, cancer or respiratory diseases, since the priors 
for these two broad disease categories were significantly weaker than 
the priors regarding CVD and cancer mortality. 
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